Listening with two different ears

Justin Aronoff, PhD
University of Illinois at Urbana-Champaign
Cochlear implants over time

• Unilateral cochlear implant performance improved vastly in the early days

• But performance has not improved much in the last 15 years (for unilateral users)
Two ears are better than one

• Improvements have come from changes such as the use of bilateral cochlear implants

• Having two ears provides a number of benefits
 • Understanding speech in noise
 • Localizing
Two cochlear implants are not as good as two acoustic ears

- Bilateral cochlear implant users get smaller and fewer benefits than those using two acoustic ears (e.g., Loizou et al., 2009; Kerber & Seeber, 2012)

- A major reason for that is likely that bilateral cochlear implant users’ two ears are very different

\[\text{RMS error (degrees)} \]

Aronoff et al., 2012
Two very different ears
Two very different ears

• The left and the right CI can differ in many ways, even if they are the same device

• CI users will often have a better and worse ear

• The two CIs will often sound different
Spectral resolution

• In noisy environments, you need to separate what you want to hear from the background

• The ability to do this relies in part on separating sounds that have similar but distinct pitches

• Your ability to do this is referred to as spectral resolution
Spectral resolution

• Do both ears have similar spectral resolution?

• To test this we had nine bilateral CI users complete a spectral resolution test using each ear alone
Spectral resolution

- The test we used was the Spectral-temporally Modulated Ripple Test* (SMRT; Aronoff & Landsberger, 2013)

*This test is available free of charge at http://smrt.tigerspeech.com
Spectral resolution

- SMRT can be used to predict speech perception in noise (each RPO increase = ~12% improvement in speech perception in noise)

Lawler, Yu, & Aronoff (2017)
• There can be considerable differences in performance depending on which ear a participant is using

• We can look at this with other tasks as well

*One participant was at floor
Music

• Do both ears have similar abilities to accurately identify musical contours?

• To test this we had the same nine bilateral CI users complete a musical contour identification test
Melodic contour identification

• Participants presented with five note sequences

• The starting note and the interval between the notes vary across trials

• Participants needed to select the contour they heard
Melodic contour identification

- There can be considerable differences in performance depending on which ear a participant is using.

- Not only is performance difference but the two ears sound different.
Mickey Mouse ear and a rumbly ear

• Participants often describe the sound they hear in the two ears as being very different
 • One ear often described as sounding like Mickey Mouse
 • The other often described as sounding rumbly

• Does this mean that the two ears are hearing different pitches?
Comparing pitches across ears

• Data was collected from 16 bilateral CI users

• Pitch heard in left and right ear was compared

• One electrode was stimulated in one ear

• Participants moved the stimulation in the opposite ear until they heard the same pitch in both ears
Comparing pitches across ears

- For some participants, the left and right ear provided comparable pitches.
- For others, there was a considerable and systematic difference in the pitches heard in the two ears.
Comparing pitches across ears

• There were significant differences between the pitches heard in the two ears for most participants

• There was considerable variability across listeners

Aronoff et al., 2016
Mickey Mouse voice and a rumbly voice?

• Your voice can provide an indication of what you hear

• If what you hear is altered so that your voice sounds low, you will compensate by increasing the pitch of your voice

• Do participants also have a Mickey Mouse voice and a rumbly voice?
Comparing vocal pitch

• 16 bilateral CI users were asked to say “ahhh”

• Participants were tested when using either the left or right CI
Vocal pitch

• Participants’ voice can often be different when using their left or right CI
Vocal pitch

- The pitch of a CI user’s voice can be quite different depending on which ear they are using.

- This provides further evidence that the pitches they hear in the two ears can differ considerably.

- Is this an isolated effect caused by the artificial task or will it extend to tasks participants do in their every day life?
Singing

• Do participants also sing different notes with the two ears?

• 10 bilateral CI users were tested

• Asked to sing “Happy Birthday”

• Tested with their left and right CI
• As with sustained vocalizations, singing suggests that the two ears hear different pitches
When ears are mismatched
Binaural fusion

- One effect of mismatches may be that sounds received by the two ears do not combine (or fuse)
- When sound is presented to two normal hearing ears it fuses into one coherent percept
Binaural fusion

• This is not always the case for CI users (Fitzgerald et al., 2015)
The effect of mismatch across ears

• What are the effects of mismatch between ears on binaural fusion?

• 8 NH listeners tested with cochlear implant simulation

• Simple task:
 • Do you hear one sound or two?

• Change whether and how much the signals in the left and right ear are mismatched
Creating mismatches between ears

• For some conditions, the signals in the two ears were matched

• For others, a mismatch was simulated
The effect of mismatch across ears

• There is a systematic relationship between the magnitude of the mismatch across ears and the likelihood of binaural fusion

Aronoff et al., 2015
Mismatches lead to mismatched signals

- It may not be the mismatch alone that is causing problems
- Each electrode encodes a different part of the signal
Mismatches lead to mismatched signals

• When there is a mismatch, matched locations will receive different parts of the signal for each ear
• Will this decrease fusion?
Mismatches lead to mismatched signals

• 3 bilateral CI users tested

• Participants moved a dial to indicate if they heard the sound coming from a small single point, a diffuse area, or two separate locations

• All stimuli were delivered to the same electrodes but the signal was either matched or mismatched
Mismatches lead to mismatched signals

- Mismatched signals reduce binaural fusion
Singing with two ears

• Does hearing different sounds in each ear make it difficult to sing a melody?

• Ten bilateral CI users sung “Happy Birthday” with their left, right, or both CIs
Singing with two ears

- Participants’ sung melodies were compared to the target melody.

Accurate melody: $r = 0.94$

Inaccurate melody: $r = 0.25$
Singing

• Accuracy is generally better with the better ear alone than with both ears together

Aronoff et al., In press
Mismatches affect non-spectral task

– Many of the benefits of having two ears come from two binaural cues

Interaural time differences (ITDs)

Interaural level differences (ILDs)
The effects of mismatch on ITD and ILD sensitivity

• 5 bilateral CI subjects

• Compared the effects of mismatch on
 • ITD sensitivity
 • ILD sensitivity

• Comparisons were done for up to five reference locations, spaced across the array
Measuring sensitivity

- Participants are presented with four sounds
- The first and last are reference sounds
- One of the two middle sounds are the target
- Participants choose the target (the one with a non-zero ITD or ILD)
Measuring ITD sensitivity

- A reference electrode was chosen.

- The minimum detectable ITD was measured when the reference was paired with different electrodes in the other ear.

Example ITD thresholds

Axes:
- X: Electrodes
- Y: Threshold (μs)

- Aligned
- Better
Measuring ILD sensitivity

• A similar procedure was used for measuring ILD sensitivity

• The only difference is that all stimuli had a 0 µs ITD and the ILD (in terms of current units) was manipulated
Mismatches and ITD and ILD sensitivity

• Mismatches adversely affect both ITDs and ILDs (see also Hu & Dietz, 2015; Kan et al. 2013; Poon 2009)
• ITDs tend to drop off quickly with increasing misalignment
• ILDs tend to decrease more slowly
Mismatches

• Mismatches are
 • Prevalent
 • Detrimental

• Can CI users adapt to these mismatches?
Learning to listen with two ears
Clinical processors

• The brain has an amazing ability to adapt

• Within six months of using a cochlear implant sounds go from being very mechanical to being natural sounding

• Will time fix the perceived mismatch between the two ears?
Adaptation

- Six bilateral CI users were asked to match pitches across ears just after activation, after six months, and after one year.

- Patients do partially adapt to mismatches.
Is adaptation sufficient

- Mismatches persist even after years of bilateral use
- Time will help, but it does not solve the problem
The (likely) future for bilateral CIs
Bilateral maps

• If time is not enough to fix the problem of mismatches, the solution might be to change the way we program bilateral CI users’ devices

• Will changing the programming such that electrodes that produce the same pitch in the two ears also encode the same frequency region improve performance?
Creating pitch-matched maps

• Seven bilateral CI users were tested with electrodes paired
 • based on electrode number only
 • based on pitch matches

• Compared performance based on SMRT
• All participants had better spectral resolution with the pitch-matched maps.

• Suggests that pitch-matched maps are an improvement over current methods.

Creating pitch-matched maps

[Bar graph showing comparison between pitch-matched and numerically matched maps with numerically matched being better at lower ripples per octave and pitch matched being better at higher ripples per octave.]
Conclusions

• Bilateral CI users have two very different ears

• When the two ears are not matched it can detrimentally affect perception

• CI users are able to adapt to some of the mismatches, but only partly

• New ways of programming bilateral CI users’ devices are needed
Thank You!

Binaural Hearing Lab
Elizabeth Abbs
Abbigail Kirchner
Daniel Lee
Elise Lippmann
EmilyAnn O’Brien
Kevin Shi
Hannah Staisloff
James Woods

UIUC
Ratnam Rama

UIC
Jeff Yu

Advanced Bionics
Leo Litvak
Smita Agrawal

Carle
Michael Novak
Jennifer Black

University of Alberta
Torrey Loucks

NYU
David Landsberger
Monica Padilla
Ann Todd

Funding
NIH/NIDCD
Advanced Bionics
National Organization for Hearing Research
Action on Hearing Loss
American Hearing Research Foundation
Center for Health, Aging, and Disabilities (UIUC)

Our dedicated participants

binauralhearinglab.shs.illinois.edu